Turning moment diagrams, coefficient of fluctuation of speed and energy, weight of flywheel, flywheel applications.

Belt drives: Types of drives, belt materials, length of belt, transmitted power, velocity ratio, belt size for flat and V belts; effect of centrifugal tension, creep and slip on power transmission; chain drives, classification of chain drive, terms used in chain drive.

Types of friction, laws of dry friction; friction of pivots and collars; single disc, multiple disc, and cone clutches, rolling friction; Types of governors, constructional details and analysis of Watt, Porter, Proell governors, effect of friction, controlling force curves. sensitiveness, stability, hunting, iso-chronism, power and effort of a governor.

Static and dynamic balancing, balancing of rotating masses in one and different planes.

Suggested Readings

- 1. Ballaney, P. L. 2016. A Text Book of Theory of Machines. Khanna Publishers, New Delhi.
- 2. Bansal, R. K. 2009. A Text Book of Theory of Machines. Laxmi Publications (P) Ltd., New Delhi.
- 3. Khurmi, R. S. and Gupta, J. K. 2010. *A Text Book of Theory of Machines*. Euresia Publishing House (P) Ltd, New Delhi.
- 4. Ratan, S. S. 2010. *A Text Book of Theory of Machines*. Tata McGraw Hill Publishing Company Ltd, New Delhi.

Thermodynamics and Heat Transfer

3(3+0)

Objective

- 1. To make the students acquainted with principles of thermodynamics and heat transfer
- 2. To make them understand the mathematical and practical aspects of heat exchangers

Theory

Basic concepts and definitions of thermodynamics, statistical and classical thermodynamics, microscopic and macroscopic point of view; Thermodynamic systems- thermodynamic equilibrium, properties of systems; state, path, process, cycle; point function, path function; temperature and zeroth law of thermodynamics; pressure, specific volume, density, energy, work and heat.

First law of thermodynamics: internal energy, law of conservation of energy, first law of thermodynamics, application of first law to a process; energy-a property of system, perpetual motion machine of the first kind-PMM1; characteristic equation of state, specific heats; application of first law of thermodynamics to non-flow or closed system; free expansion and throttling process; Second law of thermodynamics: limitations of first law of thermodynamics and introduction to second law, statements of second law of thermodynamics; Clausius statement, Kelvin-Planck statement; perpetual motion machine of the second kind-PMM2; Clausius inequality; Carnot Cycle, Carnot's Theorem, entropy, entropy changes for a closed system.

Concept, modes of heat transfer, thermal conductivity of materials, measurement, general differential equation of conduction, one dimensional steady state conduction through plane and composite walls, tubes and spheres without heat generation, electrical analogy, insulation materials and fins; Free and forced convection, Newton's law of cooling, heat transfer coefficient in convection,

non-dimensional numbers; equation of laminar boundary layer on flat plate and in a tube, laminar forced convection on a flat plate and tube, combined free and forced convection.

Thermal radiation, black body radiation, Stefan-Boltzman law, black body emissive power, emissivity, absorptivity, reflectivity and transmissivity.

Heat transfer analysis involving conduction, convection and radiation; Types of heat exchangers; fouling, log mean temperature difference, heat exchanger performance, transfer units; Heat exchanger analysis restricted to parallel and counter flow heat exchangers.

Introduction to mass transfer, analogy between heat and mass transfer, Fick's law of diffusion.

Suggested Readings

- 1. Gupta, C. P. and Prakash, R. 2008. Engineering Heat Transfer. Nem Chand and Bros., Roorkee.
- 2. Holman, J. P. 2018. Heat Transfer. McGraw Hill Book Co., New Delhi.
- 3. Incropera, F. P. and De Witt, D. P. 2016. *Fundamentals of Heat and Mass Transfer*. John Wiley and Sons, New York.
- 4. Kumar, D. S. 2016. Engineering Thermodynamics. S.K. Kataria & Sons, Delhi.
- 5. Rajput, R. K. 2019. A Text Book of Heat and Mass Transfer. S. Chand & Company Ltd., New Delhi.

3(2+1)

Tractor and Automotive Engines

Objective

To make the students acquainted with the working principles of different systems of internal combustion engines and tractor

Theory

Sources of farm power: conventional and non-conventional energy sources; Classification of tractors and IC engines.

Review of thermodynamic principles of IC (CI and SI) engines and deviation from ideal cycle; General energy equation and heat balance sheet; Derivation of thermal efficiency of Otto cycle, Diesel cycle and Dual cycle; Mechanical, thermal and volumetric efficiencies.

Study of engine components their construction, operating principles and functions; Engine strokes and comparison of 2-stroke and 4-stroke engine cycles and CI and SI engines; Engine valve systems, valve mechanism, valve timing diagram, valve clearance adjustment; Cam profile, valve lift and valve opening area.

Inlet and exhaust systems; Importance of air cleaning system; Types of air cleaners and performance characteristics of various air cleaners; Fuel supply system, types of fuels, properties of fuels, calculation of air-fuel ratio.

Different tests on fuel for SI and CI engines; Detonation and knocking in IC engines; Carburetion system, carburetors and their main functional components; Fuel injection systeminjection pump, their types, working principles; Fuel injector nozzles- types and working principles. Engine governing- need of governors, governor types and governor characteristics; Lubrication