non-dimensional numbers; equation of laminar boundary layer on flat plate and in a tube, laminar forced convection on a flat plate and tube, combined free and forced convection.

Thermal radiation, black body radiation, Stefan-Boltzman law, black body emissive power, emissivity, absorptivity, reflectivity and transmissivity.

Heat transfer analysis involving conduction, convection and radiation; Types of heat exchangers; fouling, log mean temperature difference, heat exchanger performance, transfer units; Heat exchanger analysis restricted to parallel and counter flow heat exchangers.

Introduction to mass transfer, analogy between heat and mass transfer, Fick's law of diffusion.

Suggested Readings

- 1. Gupta, C. P. and Prakash, R. 2008. Engineering Heat Transfer. Nem Chand and Bros., Roorkee.
- 2. Holman, J. P. 2018. Heat Transfer. McGraw Hill Book Co., New Delhi.
- 3. Incropera, F. P. and De Witt, D. P. 2016. *Fundamentals of Heat and Mass Transfer*. John Wiley and Sons, New York.
- 4. Kumar, D. S. 2016. Engineering Thermodynamics. S.K. Kataria & Sons, Delhi.
- 5. Rajput, R. K. 2019. A Text Book of Heat and Mass Transfer. S. Chand & Company Ltd., New Delhi.

3(2+1)

Tractor and Automotive Engines

Objective

To make the students acquainted with the working principles of different systems of internal combustion engines and tractor

Theory

Sources of farm power: conventional and non-conventional energy sources; Classification of tractors and IC engines.

Review of thermodynamic principles of IC (CI and SI) engines and deviation from ideal cycle; General energy equation and heat balance sheet; Derivation of thermal efficiency of Otto cycle, Diesel cycle and Dual cycle; Mechanical, thermal and volumetric efficiencies.

Study of engine components their construction, operating principles and functions; Engine strokes and comparison of 2-stroke and 4-stroke engine cycles and CI and SI engines; Engine valve systems, valve mechanism, valve timing diagram, valve clearance adjustment; Cam profile, valve lift and valve opening area.

Inlet and exhaust systems; Importance of air cleaning system; Types of air cleaners and performance characteristics of various air cleaners; Fuel supply system, types of fuels, properties of fuels, calculation of air-fuel ratio.

Different tests on fuel for SI and CI engines; Detonation and knocking in IC engines; Carburetion system, carburetors and their main functional components; Fuel injection systeminjection pump, their types, working principles; Fuel injector nozzles- types and working principles. Engine governing- need of governors, governor types and governor characteristics; Lubrication system- need, types, functional components; Lubricants- physical properties, additives and their application. Engine cooling system- need, cooling methods and main functional components; Need and types of thermostat valves; Additives in the coolant; Radiator efficiency.

Ignition system of SI engines; Electrical system including battery, starting motor, battery charging, cut-out, etc.; Comparison of dynamo and alternator; Basics of engine testing.

Practical

Study of different systems of CI engines; Study of engine parts and functions, working principles, etc.; Study of valve systems construction and adjustments; Determination of physical properties of oil and fuel; Study of air cleaning system; fuel supply system of SI engine; Study of diesel injection system and timing; Study of cooling system, and fan performance, thermostat and radiator performance evaluation; Study of part load efficiencies and governing; Study of lubricating system and adjustments; Study of starting and electrical system; Study of ignition system; Study of tractor engine heat balance and engine performance curves; Study of dynamo; Visit to a nozzle calibration unit; Visit to engine manufacturer/ assembler/ spare parts agency.

Suggested Readings

- 1. Ganesan, V. 1999. Internal Combustion Engines. Mc Graw Hill, New Delhi.
- 2. Goering, C. E. and Hansen, A. C. 2004. Engine and Tractor Power. ASAE. St Joseph, Michigan.
- 3. Heitner, J. 2004. Automotive Mechanics: Principles and Practices. CBS Publishers.
- 4. Liljedahl, J. B., Turnquist, P. K., Smith, D. W. and Hoki, M. 1989. *Tractors and Their Power Units*. Van Nostrand Rainhold, New York.
- 5. Mathur, M. L. and Sharma, R. P. 1996. *A course in Internal Combustion Engines*. Dhanpat Rai and Sons, New Delhi.
- 6. Rodichev, V. and Rodicheva, G. 1984. Tractors and Automobiles. Mir Publishers, Moscow.
- 7. Singh, K. 2020. Automobile Engineering. Vol II. Standard Publishers and Distributors.

Irrigation and Drainage Engineering

4(3+1)

Objective

To make the students acquainted with the different methods of irrigation depending on the crop water requirement and the different drainage solutions depending on specific situations

Theory

Major and medium irrigation schemes of India, purpose of irrigation, merits and demerits of irrigation, source of irrigation water, present status of development and utilization of different water resources of the country; Measurement of irrigation water: weir, flumes and orifices and other methods.

Design and lining of irrigation field channels, on-farm structures for water conveyance, control and distribution; Underground pipe conveyance system: components and design; land grading; Criteria for land levelling, land levelling design methods.

Soil-water-plant relationship: Soil properties influencing irrigation management, soil water movement, infiltration, soil water potential, soil moisture characteristics, soil moisture constants,