Semester VI

Tractor Systems and Controls

3 (2+1)

Objective

- 1. To make the students acquainted with different systems in a tractor, such as the transmission, brake, steering and hydraulic systems
- 2. To understand the ergonomical and safety considerations in tractor

Theory

Transmission system- need of the system in a tractor, types, major functional systems; Clutch- need, types, functional requirements, construction and principle of operation; Single plate, multi-plate, centrifugal and dual clutch systems; Gear box- principle of operation, gear box types, functional requirements, and calculation for speed ratio; Differential system- need, functional components, construction, calculation for speed reduction; Final drive; Brake system- types, principle of operation, construction, calculation for braking torque; Steering system- requirements, steering geometry characteristics, functional components, calculation for turning radius; Ackerman steering; Steering systems in track type tractors; Hydraulic system- principle of operation, types, main functional components, functional requirements. hydraulic system adjustments and ADDC; Tractor power outlets- PTO standards, types and functional requirements.

Traction- traction terminology, theoretical calculation of shear force and rolling resistance of traction device; Wheels and tyres- solid tyres and pneumatic tyres, tyre construction and tyre specifications; Traction aids; Tractor mechanics- forces acting on the tractor, determination of CG of a tractor, importance and determination of moment of inertia of a tractor, tractor static equilibrium, tractor stability especially at turns; Maximum drawbar pull and its determination; Tractor as a spring-mass system; Ergonomic considerations and operational safety; Tractor testing; Engine test codes.

Practical

Study of basic transmission systems and components; Study of clutch functioning, parts and design problem on clutch system; Study of different types of gear box, calculation of speed ratios, design problems on gear box; Study on differential, final drive and planetary gears; Study of brake systems and some design problems; Study of geometry and adjustments of tractor steering; Study of hydraulic systems in a tractor, hydraulic trainer and design problems; Study of various controls in different makes of tractors in relation to anthropometric measurements; Determination of CG and moment of inertia of a tractor; Study of traction performance of a traction wheel; Study of power transmission system of tractor; Study of tractor during operation; Study of tractor testing; Visit to tractor dealers' outlet/ tractor manufacturers.

Suggested Readings

- 1. Barger, E. L., Liljedahl, J. B. and McKibben, E. C. 1967. *Tractor and their Power Units*. Wiley Eastern.
- 2. BIS Test codes for tractor.

- 3. Giri, N. K. 2013. Automobile Mechanics (SI Units). Khanna Publishers, Delhi.
- 4. Jain, S. C. and Rai, C. R. 2013. *Farm Tractor, Maintenance and Repair*. Standard Publisher and Distributers, Delhi.
- 5. Singh, K. 2020. Automobile Engineering. Standard Publisher and Distributers, Delhi.
- 6. Srivastav, A. K., Goering, C. E. and Rohrbach, R. P. 2005. *Engineering Principles of Agricultural Machines*. ASAE. St. Joseph, Michigan.

Groundwater, Wells and Pumps

3 (2+1)

Objective

To make the students acquainted with the quality of ground water, equipment and methods for construction of wells, and different types of water lifting devices

Theory

Groundwater hydrology and hydrologic cycle, groundwater resources of World and India; Occurrence and movement of groundwater, aquifer and its types, aquifer properties, groundwater flow direction, flow in relation to groundwater contours; Classification of wells, fully penetrating tube wells and open wells, familiarization of various types of bore wells, design of open wells.

Darcy's law, determination of hydraulic conductivity by laboratory and field method; Groundwater hydraulics- Dupit's assumptions and Dupit's method, Thiem's method; Well interference; determination of aquifer parameters by different method such as Theis, Jacob and Chow's, Theis recovery method; Design of tube well and gravel pack, sanitary protection of tube wells.

Groundwater exploration techniques; methods of drilling of wells: percussion, rotary, reverse rotary; DTH; Development of tube well; Basin wise groundwater development, safe yield, factors governing safe yield, computation of safe yield by Hill's method, conjunctive use of groundwater.

Quality of groundwater, groundwater pollution; Artificial groundwater recharge techniques; different direct, indirect and combination of methods; Sea water intrusion, coastal aquifers, sources of saline water intrusion, upcoming of saline water, Ghyben-Herzberg relationship between fresh and saline water.

Pumping systems: Water lifting devices; Classification of pumps, components of centrifugal pumps, priming, pump selection, installation and troubleshooting, performance curves, effect of speed on capacity, head and power, effect of change of impeller dimensions on performance characteristics; Hydraulic ram, deep well turbine pump and submersible pump.

Practical

Verification of Darcy's law; Determination of hydraulic conductivity by laboratory and field methods; Study of piezometer, observation well and measurement of water table; Study of groundwater flow direction, preparation of iso-bath maps and its application in the field; Study of different drilling equipment; Sieve analysis for gravel and well screens design; testing of well screen; Estimation of specific yield and specific retention; Estimation of aquifer parameters by Theis method, Coopers-Jacob method, Chow method and Theis Recovery method; Design of well; Study of well