2. To enable them to design the refrigeration and air conditioning systems

Theory

Definition of pure substance, phases of a pure substance, phase change process of a pure substances; compressed liquid and saturated liquid, saturated vapour and superheated vapour, saturated temperature and saturated pressure; T-V diagram for heating of water at constant pressure.

Latent heat: Latent heat of fusion, latent heat of vaporization; liquid vapour saturation curve; property diagram for phase change process, T-V diagram, P-V diagram, P-T diagram; property tables, state-liquid and vapour states, saturated liquid-vapour mixture, superheated vapour, compressed liquid.

Principles of refrigeration, units, terminology, production of low temperatures, air refrigerators working on reverse Carnot cycle and Bell Coleman cycle; Vapour refrigeration-mechanism, P-V, T-S, P-h diagrams, vapour compression cycles, dry and wet compression, super cooling and sub cooling; Vapour absorption refrigeration system.

Common refrigerants and their properties; Thermodynamic properties of moist air, perfect gas relationship for approximate calculation, adiabatic saturation process, wet bulb temperature and its measurement, psychometric chart and its use, elementary psychometric processes.

Air conditioning: principles, type and functions of air conditioning, physiological principles in air conditioning, air distribution, factors considered for designing an air conditioning system; Room ratio line, sensible heat factor, by-pass factor; types of air conditioners and their applications; Cold storage plants; calculation of refrigeration load and cold storage design considerations.

Practical

Study of P-V and T-S chart in refrigeration; Study P-h chart (or) Mollier diagram in refrigeration; Solving problems on air refrigeration cycle; Solving problems on vapour compression refrigeration cycle; Study of domestic water cooler; Study of domestic household refrigerator; Study of vapour absorption refrigeration system; Study of cooling tower and to find its efficiency; Study of heat pump test rig; Study of Ice plant test rig; Study of psychrometric chart and various psychrometric processes; Solving problems on psychrometrics; Study of window air conditioner; Study cold storage for fruit and vegetables, freezing load and time calculations for food materials; Study on repair and maintenance of refrigeration and air-conditioning systems; Visit to chilling or ice making and cold storage plants.

Suggested Readings

- 1. Arora, C. P. 2012. Refrigeration and Air Conditioning. Tata-McGraw-Hill, New Delhi.
- 2. Khurmi, R. S. 2016. *Refrigeration and Air Conditioning*. S Chand and Co. Ltd, Ram Nagar, New Delhi.

Post-Harvest Engineering of Horticultural Crops

Objective

To make the students acquainted with unit operations in processing of major horticultural crops and working principles of different machineries for these.

2 (1+1)

Theory

Importance of processing of fruits and vegetables, spices, condiments; characteristics and properties of horticultural crops important for processing; General methods of preservation of fruits and vegetables and their relative advantages and disadvantages; Flowcharts for preparation of different finished products.

Sorting and grading methods specific to fruits and vegetables, shape and size sorting, weight sorting, image processing, colour sorting, sorting effectiveness; Peeling: different peeling methods and devices (manual, mechanical, chemical and thermal peeling).

Minimal processing and pack house activities; Size reduction and juice extraction: equipment for slicing, shredding, crushing, chopping, juice extraction; Blanching: importance and objectives; effects on food (nutrition, colour, pigment, texture); blanching methods and equipment.

Drying: Dryers for fruits and vegetables, osmo-dehydration, foam mat drying; advanced drying techniques; quality deterioration during drying of fruits and vegetables; Canning of fruits and vegetables: methods and equipment, types of cans, failures of cans; Chilling and freezing: Chilling requirements of different fruits and vegetables; Freezing of food, freezing time calculations, slow and fast freezing; Equipment for chilling and freezing (mechanical and cryogenic); Cold chain logistics and reefer containers; Cold storage heat load calculations and selection of matching equipment; Design of cold stores.

Post-harvest management and equipment for spices; Post-harvest management and equipment for flowers; Packaging and storage: packaging requirements (for containment, protection and other purposes); Characteristics of different packaging materials used for raw and processed fruits and vegetables products; bulk and retail packages; Modified atmosphere packaging, smart packaging; Packaging machines; Shrink packaging; Storage methods as low temperature storage, evaporatively cooled storage and controlled atmospheric storage.

Practical

Preparation of different processed horticultural products; Study of fruit graders; Study of different types of peelers and slicers; Study of juicer and pulper; Study of minimal processing of vegetables; Study of blanching equipment, testing the adequacy of blanching; Study of different dryers for fruits and vegetables; Study of foam mat drying and osmotic dehydration processes; Study of different activities in pack house; Cold storage heat load calculations and design; Study of different types of packaging materials; Study of CAS and MAP of vegetables; Study of shrink packaging of foods; Study of hammer mill, pulveriser for grinding of spices to powder; Visit to fruit and vegetable processing/ spice processing plant.

Suggested Readings

- 1. Dash, S. K., Chandra, P. and Kar, A. 2024. *Food Engineering Principles and Practice*. CRC Press, Boca Raton, USA
- 2. Fellows, P. J. 2008. Food Processing Technology Principles and Practices. Woodhead Publishing.
- 3. Lal, G., Siddappa, G. S. and Tondon, G. L. 2009. *Preservation of Fruits and Vegetables*. ICAR, New Delhi.
- 4. Mangaraj, S., Ali, N., Swain, S. and Dash, S. K. 2016. Agricultural Process Engineering Vol. III.

Kalyani Publishers, New Delhi

- 5. Pandey, P. H. 1997. *Post-harvest Technology of Fruits and Vegetables (Principles and practices)*. Saroj Prakashan, Allahabad.
- 6. Srivastava, R. P. and Kumar, S. 2019. *Fruit and Vegetable Preservation: Principles and Practices*. Kalyani Publishers, New Delhi.
- 7. Sudheer, K. P. and Indira, V. 2007. *Post-Harvest Engineering of Horticultural Crops*. New India Publishing House.

Case study

1(0+1)

Objectiv

To enable the students to generate an in-depth, multi-faceted understanding of a specific case/ situation/ aspect related to the profession in its real-life context

Activities

The students will be assigned to visit to a nearby area/ entity to study and analyse any particular case.

The case study can be either problem-solving type or descriptive type. The problem-solving case studies would aim to investigate a problem or situation in a particular individual or group, and recommend solution to the problem(s) based on analysis and theory.

Descriptive case studies would aim to understand a situation better. For example, identifying what happened and why by describing particular aspects of that situation and analysing it in terms of theoretical categories. This will help to make a choice about how to do things in a better way in future for another case having similar features.

Some indicative areas for the case studies are as follows.

- 1. Study the status of farm mechanization and agro-processing in a particular village and to suggest improvement measures
- 2. Study a specific watershed and suggest measures for rejuvenating the watershed
- 3. Study the losses of fruits and vegetables in a local market yard and suggest remedial measures
- 4. Study the supply chain for a commodity and suggest a suitable value chain
- 5. Visit to a village to study the energy consumption pattern and suggest measures for efficient energy use and integration of renewable energy for different farm operations
- 6. Visit to an orchard and suggest measures for optimized water use
- 7. Visit to a retail store/ farm machinery dealer and report on supply chain network
- 8. Visit to a retail store and study the different types of packaging materials
- 9. Visit to an entrepreneur and study his journey to success (or reasons of failure)

After the visit, the students will submit a report to the institution on their observations. They may also be asked to present the report before the other faculty members and students for interaction.

The activity and presentations are recommended to be accommodated on Saturdays. A teacher will be designated as the facilitator for the programme.