Sprinkler and Micro Irrigation Systems

Objective

To make the students acquainted with the importance of micro irrigation systems, their design and lay out for efficient water, fertilizer and pesticides applications.

Theory

Sprinkler irrigation: adaptability, problems and prospects, types of sprinkler irrigation systems; Design of sprinkler irrigation system: layout selection, hydraulic design of lateral, sub-main and main pipe line, design steps; Selection of pump and power unit for sprinkler irrigation system; Performance evaluation of sprinkler irrigation system: water distribution pattern and overlapping of sprinklers and laterals, uniformity coefficient and pattern efficiency.

Micro Irrigation systems: types- drip, spray, and bubbler systems, merits and demerits, different components; Design of drip irrigation system: general considerations, wetting patterns, irrigation requirement, emitter selection; Hydraulics of drip irrigation system, design steps; Necessary steps for proper operation of a drip irrigation system, maintenance of micro irrigation system: clogging problems, filter cleaning, flushing and chemical treatment.

Fertigation: advantages and limitations of fertigation, fertigation frequency, duration and injection rate, methods of fertigation.

Practical

Study of different components of sprinkler irrigation system; Study of wetting pattern of a sprinkler and requirement for overlapping of sprinkler; Study of discharge and uniformity coefficient; Design and installation of sprinkler irrigation system; Study of cost economics of sprinkler irrigation system; Study of different components of drip irrigation; Design and installation of drip irrigation system; Determination of pressure discharge relationship and emission uniformity for given emitter; Study of different types of filters and determination of filtration efficiency; Study of fertigation, types of liquid fertilisers, determination of rate of injection and calibration for chemigation/ fertigation; Design of irrigation and fertigation system; Study of cost economics of clogging of emitters; Study on maintenance of drip irrigation system; Study of cost economics of clogging of emitters; Study on maintenance of drip irrigation system; Study of cost economics of drip irrigation system; Field visit to micro irrigation system and evaluation of drip system; Field visit to study foggers.

Suggested Readings

- 1. Jain, S. C. and Philip, G. 2003. *Farm Machinery An Approach*. Standard Publishers and Distributors, Delhi.
- 2. Mane, M. S. and Ayare, B. L. 2007. *Principles of Sprinkler Irrigation system*. Jain Brothers, New Delhi.
- 3. Mane, M. S. and Ayare, B. L. and Magar, S. S. 2006. *Principles of Drip Irrigation systems*. Jain Brothers, New Delhi.
- 4. Michael, A. M., Shrimohan and Swaminathan, K. R. 1972. *Design and evaluation of irrigation methods (IARI Monograph No.1)*. Water Technology Center, IARI New Delhi.
- 5. Michael, A. M. 2012. Irrigation: Theory and Practice. Vikas Publishing, New Delhi.

- 6. Sivanappan, R. K. 1992. Sprinkler Irrigation. Oxford & IBH Publishing House, New Delhi.
- 7. Suresh, R. 2010. *Micro Irrigation Theory and Practices*. Standard Publishers Distributors, Delhi.

Machine Design

Objective

To make the students acquainted with design considerations for various machine components so as to enable them to take up the work of new design

Theory

Phases of design, design considerations; Common engineering materials and their mechanical properties; Types of loads and stresses, theories of failure, factor of safety, selection of allowable stress, stress concentration, elementary fatigue and creep aspects; Design of shafts under torsion and combined bending and torsion; Design of keys; Design of muff, sleeve, and rigid flange couplings; Cotter joints, design of socket and spigot cotter joint; knuckle joint; Design of welded subjected to static loads; Design of helical and leaf springs; Design of threaded fasteners subjected to direct static loads, bolted joints loaded in shear and bolted joints subjected to eccentric loading; Design of flat belt and V-belt drives and pulleys; Design of gears; Selection of anti-friction bearings.

Suggested Readings

- 1. Bhandari, V. B. 2007. *Introduction to Machine Design*. Tata Mc. Graw Hill Publishing House. New Delhi.
- 2. Jain, R. K. 2013. Machine Design. Khanna Publishers, 2-B Nath Market, Nai Sarak, New Delhi.
- 3. Khurmi, R. S. and Gupta, J. K. 2014. *A Text Book of Machine Design*. S. Chand & Company Ltd., New Delhi.
- 4. Sharma, P. C. and Agarwal, D. K. 2010. Machine Design. S. K. Kataria & Sons, New Delhi.

Electrical Machines

3(2+1)

2(2+0)

Objective

- 1. To make the students acquainted with operating principles of various electrical motors and other machines
- 2. To help them gain practical exposure of different electrical devices and their controls

Theory

Introduction to electrical machines; Basic principles of operation of electrical machines used in agricultural engineering such as DC generator, DC motor, 1-phase induction motor, 3-phase induction motor, and BLDC motor; Magnetic circuit: concept of magnetic flux production, magneto motive force, reluctance, laws of magnetic circuits, determination of ampere-turns for series and parallel magnetic circuits, hysteresis and eddy current losses.

Transformer: principle of working, construction of single phase transformer, EMF equation, phasor diagram on load/ load, leakage reactance, voltage regulation, power and energy efficiency, open circuit and short circuit tests; D.C. machines: principles operation and performance of DC