- 6. Sivanappan, R. K. 1992. Sprinkler Irrigation. Oxford & IBH Publishing House, New Delhi.
- 7. Suresh, R. 2010. *Micro Irrigation Theory and Practices*. Standard Publishers Distributors, Delhi.

Machine Design

Objective

To make the students acquainted with design considerations for various machine components so as to enable them to take up the work of new design

Theory

Phases of design, design considerations; Common engineering materials and their mechanical properties; Types of loads and stresses, theories of failure, factor of safety, selection of allowable stress, stress concentration, elementary fatigue and creep aspects; Design of shafts under torsion and combined bending and torsion; Design of keys; Design of muff, sleeve, and rigid flange couplings; Cotter joints, design of socket and spigot cotter joint; knuckle joint; Design of welded subjected to static loads; Design of helical and leaf springs; Design of threaded fasteners subjected to direct static loads, bolted joints loaded in shear and bolted joints subjected to eccentric loading; Design of flat belt and V-belt drives and pulleys; Design of gears; Selection of anti-friction bearings.

Suggested Readings

- 1. Bhandari, V. B. 2007. *Introduction to Machine Design*. Tata Mc. Graw Hill Publishing House. New Delhi.
- 2. Jain, R. K. 2013. Machine Design. Khanna Publishers, 2-B Nath Market, Nai Sarak, New Delhi.
- 3. Khurmi, R. S. and Gupta, J. K. 2014. *A Text Book of Machine Design*. S. Chand & Company Ltd., New Delhi.
- 4. Sharma, P. C. and Agarwal, D. K. 2010. Machine Design. S. K. Kataria & Sons, New Delhi.

Electrical Machines

3(2+1)

Objective

- 1. To make the students acquainted with operating principles of various electrical motors and other machines
- 2. To help them gain practical exposure of different electrical devices and their controls

Theory

Introduction to electrical machines; Basic principles of operation of electrical machines used in agricultural engineering such as DC generator, DC motor, 1-phase induction motor, 3-phase induction motor, and BLDC motor; Magnetic circuit: concept of magnetic flux production, magneto motive force, reluctance, laws of magnetic circuits, determination of ampere-turns for series and parallel magnetic circuits, hysteresis and eddy current losses.

Transformer: principle of working, construction of single phase transformer, EMF equation, phasor diagram on load/ load, leakage reactance, voltage regulation, power and energy efficiency, open circuit and short circuit tests; D.C. machines: principles operation and performance of DC

2(2+0)

machine (generator and motor), EMF and torque equations, excitation of DC generator and their characteristics, DC motor characteristics, starting of shunt and series motor, starters, speed control methods-field and armature control.

Three phase induction motor: construction, operation, types, concept of slip; slip speed and slip frequency, torque equation, torque-speed and torque-slip characteristics, maximum torque for starting and running condition. phasor diagram, starting and speed control methods; Single phase induction motor: principle of operation, double field revolving theory, equivalent circuit, characteristics, methods of starting, phase split, shaded pole motors, performance characteristics.

Practical

To study different parts of DC/AC machines; To perform open circuit test on a single phase transformer and determine its iron loss as well as open circuit parameters; To perform short circuit test on a single phase transformer and hence find copper loss, equivalent circuit parameters, voltage regulation and efficiency; To study how to start the D.C motor using 3-point Starter; To start and run the D.C. motor (shunt, series and compound); To control the speed of DC shunt motor using flux control method; To control the speed of DC shunt motor using armature voltage control method; To conduct brake test on DC shunt motor and to determine its performance curves; To obtain the load characteristics of DC shunt motor and draw its characteristics; To start and run the 3-phase induction motor using star-delta starter and to find different voltage and current under star and delta connection; Toperformno-loadteston3-phase induction motor to obtain the equivalent circuit parameters and to draw the circle diagram; To perform no load on1-phase induction motor and to determine its no-load losses; To perform blocked-rotor test on 1-phase induction motor and to determine its no-load losses; To perform blocked-rotor and plot torque-speed characteristic.

Suggested Readings

- 1. Anwani, M. L. 1997. Basic Electrical Engineering. Dhanpat Rai & Co. (P) LTD. New Delhi.
- 2. Boylestad, Robert, L. and Louis, N. 2015. *Electronic Devices and Circuit*. 11th edn. Pearson India.
- 3. Shaney, A. K. 1997. *Measurement of Electrical and Electronic Instrumentation*. Khanna Publications
- 4. Thareja, B. L. and Theraja, A. K. 2005. *A Textbook of Electrical Technology*. Vol. I. S. Chand & Company LTD., New Delhi.
- 5. Theraja, B. L. and Theraja, A. K. 2005. *A Textbook of Electrical Technology*. Vol. II. S. Chand & Company LTD., New Delhi.

Agricultural Statistics and Data Analysis

2 (1+1)

Objective

To make the students acquainted with important statistical data analysis tools and application of these for research in agricultural engineering